• Skip to content
  • Skip to footer
  • Accessibility options
University of Brighton
  • About us
  • Business and
    employers
  • Alumni and
    supporters
  • For
    students
  • For
    staff
  • Accessibility
    options
Open menu
Home
Home
  • Close
  • In this section...
  • Your university
  • Governance and structure
  • Working with us
  • Statistics and legal
  • News and events
  • Contact us
  • Main site links
  • Study here
    • Get to know us
    • Why choose Brighton?
    • Explore our prospectus
    • Chat to our students
    • Ask us a question
    • Meet us
    • Open days and visits
    • Virtual tours
    • Applicant days
    • Meet us in your country
    • Campuses
    • Our campuses
    • Our city
    • Accommodation options
    • Our halls
    • Helping you find a home
    • What you can study
    • Find a course
    • Full A-Z course list
    • Explore our subjects
    • Our academic departments
    • How to apply
    • Undergraduate application process
    • Postgraduate application process
    • International student application process
    • Apprenticeships
    • Transfer from another university
    • International students
    • Clearing
    • Funding your time at uni
    • Fees and financial support
    • What's included in your fees
    • Brighton Boost – extra financial help
    • Advice and guidance
    • Advice for students
    • Guide for offer holders
    • Advice for parents and carers
    • Advice for schools and colleges
    • Supporting you
    • Your academic experience
    • Your wellbeing
    • Your career and employability
  • Research
    • Research and knowledge exchange
    • Research and knowledge exchange organisation
    • The Global Challenges
    • Centres of Research Excellence (COREs)
    • Research Excellence Groups (REGs)
    • Our research database
    • Information for business
    • Community University Partnership Programme (CUPP)
    • Postgraduate research degrees
    • PhD research disciplines and programmes
    • PhD funding opportunities and studentships
    • How to apply for your PhD
    • Research environment
    • Investing in research careers
    • Strategic plan
    • Research concordat
    • News, events, publications and films
    • Featured research and knowledge exchange projects
    • Research and knowledge exchange news
    • Inaugural lectures
    • Research and knowledge exchange publications and films
    • Academic staff search
  • About us
  • Business and employers
  • Alumni, supporters and giving
  • Current students
  • Staff
  • Accessibility
Search our site
Aerial view of the Moulsecoomb campus
About us
  • Your university
  • Governance and structure
  • Working with us
  • Statistics and legal
  • News and events
  • Contact us
  • News and events
    • News and events
    • News
    • Events
    • Coronavirus
    • Livestream
    • Open lectures
    • Term dates
  • News
    • News
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Brighton researcher leads first glimpse inside the giant stones of Stonehenge

Brighton researcher leads first glimpse inside the giant stones of Stonehenge

Professor David Nash has led a team taking the first glimpse inside one of Stonehenge's giant sarsen stones, providing new insights into these iconic objects.

6 August 2021

In a paper published in the journal PLoS ONE, an international team led by Professor Nash - Professor of Physical Geography at the University of Brighton's School of Applied Sciences – were able to reveal the geological structure of the stone that made the sarsen ideal for building a monument made to last.

The core sample used to make the first comprehensive scientific analysis of one of Stonehenge's imposing megaliths has an interesting history itself. It was taken from what is classified as Stone 58 – one of several stones that had fallen over – that underwent conservation work in the 1950s following the discovery of a crack running through the stone. To conserve the stone, three holes around 2.5cm in diameter were drilled through its full thickness (around 1m) to insert metal rods.

Analysing the Phillips' Stonehenge Core under a magnifying glass

Analysing the Phillips' Stonehenge Core

Two of the cores then disappeared, though part of one was rediscovered at Salisbury Museum in 2019. The third core was given to Robert Phillips, who worked for the drilling company, and went with him to the USA when he retired. Phillips returned the core to English Heritage in 2018 to provide material for research, before he passed away in 2020.

Analysing a small 7cm section of the 1950s core, Nash's team found that the sarsen's structure of sand-sized quartz grains cemented tightly together by an interlocking mosaic of quartz crystals was what made the stone so impervious to crumbling or erosion.

Professor Nash said: “It is extremely rare as a scientist that you get the chance to work on samples of such national and international importance. Stonehenge is part of a World Heritage Site and is subject to the strictest legal protections, so it would be highly unlikely that we would be able to access this type of material today. Getting access to the core drilled from Stone 58 was very much the Holy Grail for our research.

Thanks to help from organisations such as the British Geological Survey and the Natural History Museum we have been able to apply a suite of state-of-the-art techniques to the Phillip’s Core. We have CT-scanned the rock, zapped it with X-rays, looked at it under various microscopes and analysed its sedimentology and chemistry. This small sample is probably the most analysed piece of stone other than Moon rock! “

Sample of the Phillips' Stonehenge Core

Sample of the Phillips' Stonehenge Core

Dr Alex Ball, Head of Division, Imaging and Analysis at the Natural History Museum, said: “We are delighted that our specialist team of scientists from the Museum’s Imaging and Analysis Centre have contributed to reveal further secrets of Stonehenge, showing how our state-of-the-art techniques and equipment continue to unlock new discoveries.”

Typically weighing 20 tonnes and standing up to 7 metres tall, sarsens form all fifteen stones of Stonehenge’s central horseshoe, the uprights and lintels of the outer circle, as well as outlying stones such as the Heel Stone, the Slaughter Stone and the Station Stones. Fifty-two of the original 80 or so sarsens remain at the monument.

The new findings build on further pioneering research published by Professor Nash last year in which he used the so-called Phillip’s Core to show that most of Stonehenge's large sarsen stones likely came from a site around 15 miles away in West Woods on the edge of the Marlborough Downs. This new geological research provides further data that could help trace the sources of the remaining stones.

The research was an interdisciplinary collaboration between the University of Brighton, Bournemouth University, University College London, University of South Wales, Vrije Universiteit Brussel, British Geological Survey, English Heritage, the Natural History Museum (London), Gatan UK and Vidence Inc. (Canada), and was funded by the British Academy and Leverhulme Trust.

Back to top
  • Facebook
  • X logo
  • Instagram
  • TikTok
  • YouTube
  • LinkedIn icon

Contact us

University of Brighton
Mithras House
Lewes Road
Brighton
BN2 4AT

Main switchboard 01273 600900

Course enquiries

Sign up for updates

University contacts

Report a problem with this page

Quick links Quick links

  • Courses
  • Open days
  • Explore our prospectus
  • Academic departments
  • Academic staff
  • Professional services departments
  • Jobs
  • Privacy and cookie policy
  • Accessibility statement
  • Libraries
  • Term dates
  • Maps
  • Graduation
  • Site information
  • Online shop
  • The Student Contract

Information for Information for

  • Current students
  • International students
  • Media/press
  • Careers advisers/teachers
  • Parents/carers
  • Business/employers
  • Alumni/supporters
  • Suppliers
  • Local residents